镓(拼音:jiā,注音:ㄐ丨ㄚ,粤拼:gaa1;英语:Gallium),是一种化学元素,其化学符号为Ga,原子序数为31,原子量为69.723 u,位于元素周期表的第13族,为一种贫金属,与铝、铟和铊具有相似的特性。它是由法国化学家保罗·埃米尔·勒科克·德布瓦博德兰在1875年发现的。[6]
镓的熔点可作为温度参考点。镓合金亦可应用于温度计,作为代替汞的无毒和环保的替用品,并且可以承受比汞更高的温度。镓铟锡合金(62–95%镓,5–22%铟和0–16%锡)具有远低于水凝固点的凝固点 -19°C(-2°F),但这也可能是过冷的凝固点。
镓在自然界中不以单质存在,常以镓(III)的形式微量散存于锌矿(例如闪锌矿)、铝土矿等矿石中。当温度高于29.76 °C(85.57 °F),镓会融化成液体,因此此金属会融化于人的手中(一般人的体温为37.0 °C(98.6 °F))。
镓在多种关键新兴技术中皆有重要应用。电子设备中主要使用的镓化合物砷化镓,用于微波电路、高速转换电路、红外线电路。半导体氮化镓和氮化铟镓则用于制造蓝色和紫色的发光二极管(LED)和激光二极管。除此之外,镓也用于生产珠宝用途的人造钆镓榴石型铁氧体。镓被列为一种技术关键元素。[7][8]
镓在生物学中没有已知的天然作用。三价镓和三价铁在生物系统中有相似的作用,因此三价镓也被应用在药学和放射药理学上。
单质镓不存在于自然界,但可以通过冶炼获得。极纯的镓是银蓝色的金属,会像玻璃一样形成贝壳状断口。液态镓转化为固态时,会膨胀3.4%[9],因此它不能储存于玻璃或金属容器里,因为容器会因为镓的凝固而破裂。其它和镓一样在凝固时膨胀的材料有水、硅、锗、铋和钚。[10]
镓会扩散到金属的晶格攻击大部分金属。举个例子,它会扩散到铝锌合金[11]和钢[12]的晶粒边界里,使得它们变得很脆。镓很容易和其它金属形成合金,这个性质用于原子弹钚弹芯的钚镓合金中,以稳定钚晶体的结构。[13]
镓的熔点 302.9146 K(29.7646 °C,85.5763 °F)仅略高于室温,与地球中纬度地区夏季的平均白天温度大致相同。它的熔点是国际计量局(BIPM)制定的国际实用温标(ITS-90)的正式温度参考点之一。[14][15][16]国家标准技术研究所(NIST)则优先使用镓的三相点 302.9166 K(29.7666 °C,85.5799 °F),而不是熔点。[17]
镓的低熔点使得它可以在人的手中融化。这种液态金属倾向于形成过冷液体:纳米镓颗粒在90 K下仍可以保持液态。[18]加入晶种或者对其震荡即可使镓重新回到固态[9]。镓是在室温或接近室温下呈液态的四个非放射性金属之一,另外三个是铯、铷和汞。在这四个金属中,镓是唯一一种既没有高反应性(铷和铯)也没有高毒性(汞)的,因此可用于高温温度计。值得注意的是,它是具有最大液态范围的金属之一。与汞不同,镓在高温下具有低蒸气压。镓的沸点为2673 K,比它在绝对标度上的熔点高8倍以上,这是任何元素的熔点和沸点之间的最大比值。[19]虽然镓的毒性比汞低,需要的预防措施也少得多,但由于液态镓会浸润玻璃、皮肤以及很多材料,使得它更难处理。涂在玻璃上的镓会形成一面明亮的镓镜。[20]
晶体镓不属于任何简单的晶体结构。镓在标准情况下的晶体结构是正交晶系,一个单元格里有8个原子。在一个单元格中,每个原子都只有一个最近的原子(距离为244 pm)。剩下的六个原子则距离较远,而这六个原子也以244 pm的距离成对。[22]镓由于温度和压力的变化,会形成许多稳定和亚稳定的相态。[23]
两个最接近的镓原子之间的键是共价键,因此Ga2二聚体被视为晶体镓的基本组成部分。这解释了为什么镓相对于邻近的铝和铟有较低的熔点。这种结构惊人地和碘相似,可能是镓原子比4s电子和[Ar]3d10原子实更远离原子核的单个4p电子之间的相互作用而成的。这种现象在同为液态的汞的“拟惰性气体”电子构型 [Xe]4f145d106s2中再次出现。[24]镓的3d10电子不能屏蔽外层的电子,所以镓的第一电离能比铝大。[10]液态镓中不存在Ga2二聚体,而是形成复杂的低配位结构,其中每个镓原子只被10个原子环绕,而其它液态金属则被11-12个原子环绕。[25][26]
镓的物理性质有极高的各向异性,也就是沿三个主要的晶轴a、b和c(见图)测量的值不同。温度会强烈影响镓的性质,尤其是在熔点附近的温度。例如,镓在熔化时的热膨胀系数会增加数倍。[21]
镓主要以+3氧化态存在。镓的+1氧化态比较重的同类物铟和铊罕见,但也存在于某些化合物中。举个例子,非常稳定的GaCl2同时含有镓(I)和镓(III),结构为GaIGaIIICl4。作为比较,镓的一氯化物在0 °C以上不稳定,会歧化成单质镓和三氯化镓。真正的镓(II)化合物含有Ga–Ga键,例如GaS(结构为Ga24+(S2−)2)和二氧六环配合物Ga2Cl4(C4H8O2)2。[28]
强酸可以溶解镓,形成像是Ga(NO3)3的镓(III)化合物。镓(III)化合物的水溶液含有水合镓(III)离子[Ga(H2O)6]3+。[29]:1033氢氧化镓 Ga(OH)3可以通过镓(III)溶液和氨反应沉淀而成。Ga(OH)3在100 °C下脱水,形成碱式氧化镓 GaO(OH)。[30]:140–141
碱性氢氧化物溶液也可以溶解镓,形成含有Ga(OH)−4离子的镓酸盐。[31][29]:1033[32]两性的氢氧化镓也溶于碱,形成镓酸盐。[30]:141早期研究认为Ga(OH)3−6可能存在,[33]但之后的研究没发现这种离子。[32]
镓在高温下才会和氧族元素反应。由于形成了保护性的氧化物层,室温下的镓不与空气和水反应。不过,高温下的镓会和空气中的氧气,形成氧化镓 Ga2O3。[31]在500 °C至700 °C的真空下使用单质镓还原Ga2O3会产生深棕色的氧化亚镓 Ga2O。[30]:285Ga2O是很强的还原剂,可以把H2SO4还原成H2S。[30]:207它在800 °C下歧化成单质镓和Ga2O3。[34]
镓和氨在1050 °C下反应,形成氮化镓 GaN。镓也可以分别和磷、砷和锑形成磷化镓(GaP)、砷化镓(GaAs)和锑化镓(GaSb)。这些化合物的晶体结构和ZnS一样,且都是半导体。[29]:1034GaP、GaAs和GaSb可以通过镓和对应的氮族元素直接反应而成。[34]:99它们的电导率比GaN大。[34]:101GaP也可以通过Ga2O和磷在低温下反应而成。[37]
氧化镓会和HF或F2等氟化剂反应,形成三氟化镓 GaF3。它是不溶于水的离子化合物。它可溶于氢氟酸并和水形成加合物 GaF3·3H2O。尝试对这种加合物脱水只会产生 GaF2OH·nH2O。它和氨反应,产生 GaF3·3NH3,后者加热可以生成 GaF3。[30]:128–129
加热时,镓(III)卤化物会和单质镓反应,形成对应的镓(I)卤化物。举个例子,GaCl3和Ga反应,形成GaCl:
在低温下,反应平衡会向左移动,GaCl也会歧化成GaCl3和单质镓。GaCl也可以通过Ga和HCl在950 °C下反应而成,产物可凝华成红色固体。[29]:1036
镓(I)卤化物可以通过和路易斯酸形成加合物而稳定存在:
1871年,俄国化学家门捷列夫以他的元素周期律,预测“镓”的存在,称之为“eka-aluminium”,意思“铝下元素”(铝下一行的元素)。其密度、熔点、氧化物的特征、和氯的成键等性质与随后发现的“镓”实值相差无几[43] 。
门捷列夫更提出了一些关于这个元素的预测:人们将可以用光谱仪来发现这个元素;这个金属元素既可以溶于酸又可以溶于碱,但不会和空气反应; M2O3溶于酸时会产生MX3形式的盐类;这个金属的盐类是碱式盐;这个金属的硫酸盐可以组成矾;以及无水MCl3的挥发性比ZnCl2更高,以上这些预测后来都被证实是正确的。[44]
德布瓦博德兰以“高卢”(Gallia)为这个元素命名,在拉丁语中这是对法国高卢的称呼。也有人认为是运用不同语言的双关语而用他的名字(其中包含“Lecoq”)命名:Le coq在法语中是“公鸡”(rooster)之意,而后者在拉丁语中又是“吊带”(gallus,与镓gallium相近)的意思。不过1877年德布瓦博德兰写文章否定这个猜测[46] 。
德布瓦博德兰原本认为镓的密度是4.7 g/cm3,和门捷列夫预测的数值不相符。在门捷列夫的建议下,德布瓦博德兰重新测量,并且得到和门捷列夫预测几乎相同的数值:5.9 g/cm3。[44]
在拜耳法中将铝土矿加工成氧化铝的过程中,镓会在氢氧化钠溶液中积累,这些镓可以通过多种方法提取。最新的方法是使用离子交换树脂。[58]镓的提取率主要取决于铝土矿原料中镓的原始浓度。在50 ppm的典型浓度下,大约15%的镓是可提取的,[58]剩下的部分则通过红泥和氢氧化铝流失。溶液中的镓之后通过离子交换树脂分离,对其电解可以得到金属镓。半导体镓则要用区域熔融技术提纯,或从熔融物中提取单晶(即柴氏法)。99.9999%纯的镓已经能例行取得,并且在商业上有广泛应用。[60]
以副产品的形式开采意味着镓的生产受到每年提取的铝土矿、硫化锌矿石(和煤)数量的限制,因此需要根据供应潜力来讨论其可用性。副产品的供应潜力定义为在当前市场条件(即技术和价格)下,“每年”从其主体材料中经济可提取的数量。[61]因为它们不能从主要产品中独立提取,所以副产品的储量和资源与供应潜力无关。[62]最近的预测认为铝土矿的镓供应潜力至少为2100吨/年,硫化锌矿石的供应潜力为85吨/年,而煤炭的潜在供应量为590吨/年。[58]这些数值显著大于目前的产量(375吨,2016年)。[63]因此,在不显着增加生产成本或价格的情况下,镓的副产品产量将有可能在未来大幅增加。2016年低品位镓的平均价格为每公斤120美元,2017年则为每公斤135-140美元。[64]
2017年,全球低品位镓的产量约为315吨,比2016年高出了15%。中国、日本、韩国、俄罗斯和乌克兰是镓的主要生产国,而德国在2016年停止了镓的生产。高纯镓的产量则约为180吨,主要来自中国、日本、斯洛伐克、英国和美国。全球2017年的年产量极限预测为730吨(低品位)和320吨(高纯)。[64]
中国于2016年生产了约250吨低品位镓,而2017年时生产了约300吨,占全球LED产量的一半以上。[64]
极纯(>99.9999%)的镓可用于半导体工业。2007年,用于电子元件的砷化镓(GaAs)和氮化镓(GaN)约占美国镓消费量的98%。在美国,大约66%的半导体镓用于集成电路(主要是砷化镓),例如制造超高速逻辑芯片和用于手机中的低噪声微波前置放大器的金属半导体场效应管。约有20%的半导体镓则用于光电工程。[52]
全球的砷化镓占了全球镓年消费量的95%。[60]2016年的砷化镓金额为75亿美元,其中53%来自手机,27%来自无线通信,其余来自汽车、消费者、光纤和军事应用。最近GaAs消费量的增加主要与3G和4G智能手机的出现有关,它们使用的GaAs量是旧型号的10倍。[64]
砷化镓和氮化镓也存在于各种光电器件中,2015年和2016年的市场份额分别为153亿美元和185亿美元。[64]砷化铝镓(AlGaAs)也用于高能红外线发光二极管。半导体氮化镓和氮化铟镓则用于蓝色和紫色光电器件,主要是激光二极管和发光二极管。例如,405nm氮化镓二极管激光器被用作高密度蓝光光盘紧凑型数据磁盘驱动器的紫色光源。[66]
为卫星电力应用而开发的多结光伏电池由砷化镓、磷化铟镓或砷化铟镓薄膜的分子束外延或有机金属化学气相沉积法制成。火星探测漫游者和多颗卫星在锗电池上使用三结砷化镓。[67]镓也是用于太阳能板的光伏化合物(例如Cu(In,Ga)(Se,S)2)中的一种成分,这些化合物是晶体硅具有成本效益的替代品。[68]
镓可以和大部分金属形成低熔点合金。镓、铟和锡组成的几乎共晶的合金镓铟锡合金在室温下是液体,用于医用温度计。它的熔点只有−19 °C(−2.2 °F)。[69]有人建议镓合金可以用来代替水冷却计算机芯片,并经常被用作高性能计算中导热膏的替代品。[70][71]镓合金是银汞的替代品,但尚未得到广泛接受。
虽然生物体内的自然反应作用并不利用镓,但镓离子在生物体内所参与的各种反应过程与铁(III)类似。这些生物作用包括炎症,是许多疾病的指标,所以有一些镓盐在医疗中被用作药物和放射性药物(或正在开发中)。由于发现注射67Ga(III)的柠檬酸盐到带有肿瘤的动物体内后,镓盐会聚积于肿瘤部位,激起了研究镓盐用于抗癌的兴趣。临床研究发现硝酸镓对非霍奇金氏淋巴瘤和尿路上皮癌具有抗肿瘤活性。而新一代的镓配合物,例如麦芽酚镓和三(8-喹啉酸)镓(III)(KP46),也已出现。[75]硝酸镓已被用作静脉注射药物治疗骨骼恶性转移造成的高钙血症。推测这是因为镓干扰破骨细胞的功能,当其它治疗失败时,尝试此治疗可能会见效。[76] 麦芽酚镓是极易吸收的口服镓(III)盐,可以对抗病理性增殖细胞的增殖,特别是癌细胞和某些用镓代替三价铁(Fe3+)的细菌。正在进行以这种化合物进行治疗癌症、传染病和发炎疾病的临床与临床前试验。[77]
镓离子被细菌摄入(例如假单胞菌属的细菌)可干扰细菌的呼吸作用而杀死细菌。这是因为镓离子取代了铁(III)在细菌生化反应中的角色:铁离子可以被氧化与还原,允许在呼吸作用中转移电子,而镓离子不能氧化还原。[78][79]
镓-67的盐(例如柠檬酸镓和硝酸镓),是核子医学扫描(镓扫描)中所使用的放射性药物。所利用的是镓-67,至于是什么镓盐并不重要。人体会把Ga3+看作是Fe3+,因此镓离子会浓集于发炎以及有快速细胞分裂的地方。于是可以使用核扫描技术摄影成像。[82]
半衰期68分钟的镓-68会放出正电子,被用于正子断层造影作为诊断放射性核素。将镓与体抑素的类似物结合,可以利用这种配合物追踪神经内分泌肿瘤。镓-68可以从镓-68制造器中锗的放射性同位素锗-68的衰变而成,然后通过洗脱提取。[83]
|journal=
被忽略 (帮助)