鿫(;拼音:ào,注音:ㄠˋ,粤拼:ou3,音同“奥、澳”;英语:Oganesson),是一种人工合成的化学元素,其化学符号为Og,原子序数为118,是当前所有已发现的元素中原子序数最大的元素。鿫是一种放射性极强、极为不稳定的超重元素,所有同位素的半衰期都极短,其当前唯一的已知同位素为294Og,半衰期仅0.69毫秒。鿫不存在于自然界中,只能在实验室内以粒子加速器人工合成。自2005年起,科学家只成功合成出五个(亦可能为六个)鿫-294原子。[14]
2002年,一个俄美合作的科学家团队在位于俄罗斯杜布纳的联合核研究所首次合成出鿫。国际纯化学和应用化学联合会(IUPAC)及国际纯粹与应用物理学联合会(IUPAP)所组成的联合工作小组在2015年12月确认此项发现。为肯定俄罗斯核物理学家尤里·奥加涅相在超重元素合成工作上的重大贡献[15],IUPAC于2016年11月28日正式将此元素命名为“Oganesson”。[16][17]鿫和𬭳是唯二用当时仍在世的人命名的元素,鿫也是唯一一个名称所纪念者今日仍健在的元素。
超重元素[a]的原子核是在两个不同大小的原子核[b]的聚变中产生的。粗略地说,两个原子核的质量之差越大,两者发生反应的可能性就越大。[24]由较重原子核组成的物质会作为靶子,被较轻原子核的粒子束轰击。两个原子核只能在距离足够近的时候,才能聚变成一个原子核。原子核(全部都有正电荷)会因为静电排斥而相互排斥,所以只有两个原子核的距离足够短时,强核力才能克服这个排斥力并发生聚变。粒子束因此被粒子加速器大大加速,以使这种排斥力与粒子束的速度相比变得微不足道。[25]不过,只是靠得足够近不足以使两个原子核聚变:当两个原子核逼近彼此时,它们通常会在一起约10−20秒后裂变(产物不需要和反应物相同),而非形成单独的原子核。[25][26]如果聚变发生了,两个原子核产生的一个原子核会处于激发态[27],被称为复合原子核,非常不稳定。[25]为了达到更稳定的状态,这个暂时存在的原子核可能会直接核裂变,[28]或是放出一些带走激发能量的中子。如果这些激发能量不足以使中子被放出,复合原子核就会放出γ射线。这个过程会在原子核碰撞后的10−16秒发生,并创造出更稳定的原子核。[28]联合工作团队(JWP)定义,化学元素的原子核只有10−14秒内不进行放射性衰变,才能被识别出来,这个值大约是原子核得到它的外层电子,显示其化学性质所需的时间。[29][c]
粒子束穿过目标后,会到达下一个腔室——分离室。如果反应产生了新的原子核,它就会被这个粒子束携带。[31]在分离室中,新产生的原子核会从其它核素(原本的粒子束和其它反应产物)中分离,[d]并转移到半导体探测器中,在这里停止原子核。这时标记撞击探测器的确切位置、能量和到达时间。[31]这个转移需要10−6秒的时间,意即这个原子核需要存活这么长的时间才能被检测到。[34]衰变被记录后,这个原子核被再次记录,并测量位置、衰变能量和衰变时间。[31]
原子核的稳定性源自于强核力,但强核力的作用距离很短,随着原子核越来越大,强核力对最外层的核子(质子和中子)的影响减弱。同时,原子核会被质子之间,范围不受限制的静电排斥力撕裂。[35]超重元素[36]的主要衰变方式——α衰变和自发裂变都是这种排斥引起的。[e]α衰变由发射出去的α粒子记录,在实际衰变之前很容易确定衰变产物。如果这样的衰变或一系列连续衰变产生了一个已知的原子核,则可以很容易地确定反应的原始产物。[f](衰变链中的所有衰变都必须在同一个地方发生。)[31] 已知的原子核可以通过它经历的衰变的特定特征来识别,例如衰变能量(或更具体地说,发射粒子的动能)。[g]然而,自发裂变会产生各种分裂产物,因此无法从其分裂产物确定原始核素。[h]
尝试合成超重元素的物理学家可以获得的信息是探测器收集到的信息:粒子到达探测器的位置、能量和时间,以及粒子衰变的信息。物理学家分析这些数据并试图得出结论,确认它确实是由新元素引起的,而非由不同的核素引起的。如果提供的数据不足以得出创造出来的核素确实是新元素的结论,并且对观察到的影响没有其他解释,就可能在解释数据时出现错误。[i]
在氦、氖、氩、氪、氙和氡之后的第七种稀有气体存在的猜测在稀有气体族被发现时不久就产生了。丹麦化学家Hans Peter Jørgen Julius Thomsen在1895年4月,氩发现后的第二年表示有一系列和氩类似的稀有气体会连接卤素和碱金属,而他预测和钍、铀同一周期的那个稀有气体(也就是今天的鿫)的原子量为 292, 接近于 294 ,第一种且是唯一一种确认了的鿫同位素。[48] 最早猜测118号元素有可能存在的,是丹麦物理学家尼尔斯·玻尔。他在1922年写道,这一元素在元素周期表上应位于氡以下,成为第七种稀有气体。[49]阿里斯蒂德·冯·格罗塞在1965年发表的论文中预测了118号元素的性质。人工合成元素的方法在1922年还未被研发出来,同样,在1965年还没有出现稳定岛这一理论概念,因此这两项是具有先见之明的理论预测。从玻尔预测至鿫终于被成功合成,经过了八十年。不过,鿫的化学性质是否遵循同族元素的规律,仍有待揭晓。[8]
1998年末,波兰物理学家罗伯特·斯莫兰楚克发表聚合原子核来合成超重原子的所需计算,其中也包括鿫。他的计算显示,在严格控制的环境下聚合铅和氪,就能制成鿫,反应的发生几率(截面)和此前合成𬭳所用的铅铬聚合反应相当。然而,也有理论预测显示,随着所产生元素的原子序的提高,利用铅或铋的聚变反应截面会指数下降,这和斯莫兰楚克的计算相悖。[50]
翌年,由于其他的实验室及劳伦斯伯克利国家实验室本身都未能重复这些结果,研究团队因此撤回这项发现。[53]2002年6月,实验室主任宣布原先两个元素的发现结果,是建立在第一作者维克托・尼诺夫所假造的数据上的。[54][55]
新的实验结果和理论计算都证实,随着所产生核素的原子序的提高,以铅或铋为目标体的聚变反应截面的确会指数下降。[56]
2002年,一个由美国和俄罗斯科学家所组成的团队在位于俄罗斯杜布纳的联合核研究所首次真正探测到鿫原子的衰变。团队由亚美尼亚裔俄籍核物理学家尤里·奥加涅相领导,成员包括来自美国加州劳伦斯利福摩尔国家实验室的科学家。[57]团队并没有即时公布此项发现,因为294Og的衰变能量与212mPo吻合,而后者是超重元素合成过程中聚变反应的常见杂质。要直到2005年再一次实验证实之后,团队才正式宣布发现新元素。[58]研究人员在2006年10月9日宣布[11]间接地探测到一共三个(可能为四个)鿫-294原子核:包括2002年探测到的一个(或两个),[57]以及2005年探测到的另外两个。合成反应为:[59][60][61][62][63]
2011年,国际纯化学和应用化学联合会(IUPAC)在评估过杜布纳和利福摩尔合作团队2006年的研究结果后宣布:“观测到的三次Z = 118同位素衰变事件有比较好的内部冗余,但这些事件都没有以已知原子核作为基础,所以不满足正式发现的条件。”[64]
由于核聚变反应的发生概率很低(聚变截面为~0.3–0.6 pb,即(3–6)×10−41 m2),所以实验一共花时四个月,在向锎目标体发射一共2.5×1019个钙离子之后,才首次探测到与鿫成功合成相符的事件。[65]该事件随机发生的可能性估计小于100,000分之1,所以研究人员很有把握这并不是误测。[66]
实验共观测到三个鿫-294原子经α衰变成为𫟷-290,也有可能观测到一个鿫原子发生自发裂变。由于只观测到三个原子的衰变,因此计算出来的半衰期有着很大的不确定性:0.89+1.07−0.31 ms。[11]α衰变的反应式为:
2011年,位于德国达姆施塔特的亥姆霍兹重离子研究中心在利用248Cm+54Cr反应试图合成120号元素Ubn时,可能观测到一个295Og原子。然而实验数据的不确定性较大,因此无法确切判断所观测到的是299120和295Og的衰变链。数据显示,295Og的半衰期为181毫秒,比294Og的0.7毫秒长得多。[13]
2015年12月,国际纯化学和应用化学联合会(IUPAC)及国际纯粹与应用物理学联合会(IUPAP)所组成的联合工作小组承认118号元素的确实发现,并肯定发现者为杜布纳和利福摩尔合作团队。[70]此次能够承认发现的原因包括,294Og和286Fl衰变产物的性质在2009年和2010年得到劳伦斯伯克利国家实验室证实,杜布纳团队又于2012年再次观测到294Og的衰变链,且衰变参数与先前所测量的相符。联合核研究所的那项研究原本是为了通过249Bk(48Ca,3n)反应合成294Ts,但因为249Bk的半衰期非常短,目标体有一大部分已衰变为249Cf,合成反应因此产生出鿫,而非鿬。[71]
为了合成295Og和296Og这两个更重的同位素,杜布纳团队又在2015年至2016年进行类似的实验,以48Ca作为发射体,并以249Cf、250Cf和251Cf同位素的混合物为目标体。实验共利用两个离子束能量:252 MeV和258 MeV。用较低能量束时,只探测到一个原子,其衰变链和先前已知的294Og相符(即最终衰变至286Fl,然后自发裂变);用较高能量束时,并未观测到任何原子。[72]
德米特里·门捷列夫为有待命名或尚未发现的元素发明一套命名法,根据这套命名法,鿫应称为“eka-氡”(1960年代之前则称为“eka-emanation”,emanation是氡的旧称)。[10]1979年,IUPAC订下一套元素系统命名法,118号元素应称为“ununoctium”,化学符号为“Uuo”。[73]IUPAC建议在元素经证实发现之前,应该以此名称代替。[74]尽管各级化学教科书都广泛使用着IUPAC的命名,但行内的科学家却一般称之为“118号元素”,化学符号为“E118”、“(118)”或“118”。[2]
俄罗斯科学家最早在2006年宣布合成118号元素。根据IUPAC建议,新元素的命名权属于其最早发现者。[76]联合核研究所主任曾经在2007年表示,研究团队正考虑两个名字:以杜布纳的研究实验室创立人格奥尔基·弗廖罗夫命名为“flyorium”(现成为114号元素𫓧的名称,flerovium),及以研究所所在地莫斯科州命名为“moskovium”(现成为115元素镆的名称,moscovium)。[77]他也认为,虽然此项发现是俄美团队合作的成果(目标体元素锎是由美国团队提供),但118号元素名正言顺地应以俄罗斯的人物或地点命名,因为联合核研究所的弗廖罗夫核反应实验室是世界上唯一一座能取得这种成果的设施。[78]
除氦(helium)以外,稀有气体的名称均以“-on”结尾:氖(neon)、氩(argon)、氪(krypton)、氙(xenon)和氡(radon)。在鿫发现当时,IUPAC规定所有新元素名称都必须以“-ium”结尾,一般以“-ine”结尾的卤素和一般以“-on”结尾的稀有气体元素也不例外。[79]做临时代替之用的系统命名“ununoctium”就符合这项规定。不过,IUPAC在2016年又公布了新的命名建议:新的18族元素,无论性质是否属于稀有气体,其名称都要以“-on”结尾。[80]
2016年6月,IUPAC宣布118号元素的发现者考虑把它命名为“oganesson”(符号Og),以肯定亚美尼亚裔俄籍核物理学家尤里·奥加涅相在超重元素研究上的重大贡献。奥加涅相投身核物理研究六十年,106号到118号元素就是直接利用他和他的团队所研发的方法来合成的。[81]2016年11月28日,“oganesson”成为118号元素的正式名称。[15]奥加涅相事后对新元素以他命名表达以下的感想:[82]
2017年1月15日,中华人民共和国全国科学技术名词审定委员会联合国家语言文字工作委员会组织化学、物理学、语言学界专家召开113号、115号、117号、118号元素中文定名会,将此元素命名为“鿫”(读音同“奥”)。[84][85]2017年4月5日,中华民国国家教育研究院的化学名词审译委员会审译修正通过之“化学元素一览表”将此元素命名为“鿫”,音同“澳”。[86]2018年6月5日,“鿫”字被正式加入统一码11.0版本中,码位为U+9FEB。
从96号元素锔开始,原子序越高,原子核的稳定性越低。锔以后所有元素的半衰期都比锔短四个数量级。原子序超过101(钔)的所有同位素都会发生放射性衰变,半衰期都在30个小时以下。原子序超过82(铅)的元素均没有稳定的同位素。[87]这是因为原子核中,质子和质子之间的库仑相斥力随着质子数量的上升而加强,以致强核力无法再避免原子核发生自发裂变。计算显示,假如不考虑其他增加稳定性的因素,质子数超过104(𬬻)的所有元素都不可能存在。[88]然而,科学家在1960年代提出,当质子数和中子数分别在114和184附近时,核壳层处于满充、闭合状态,原子核的稳定性应获得增强。这就是所谓的“稳定岛”,岛上核素的半衰期理论上可以达到数千年甚至数百万年。人工合成实验固然还没有达到稳定岛范围内的同位素,但单从包含鿫在内的超重元素存在的事实,就足以证明增强稳定性的效应是存在的。整体趋势是,已知超重核素的寿命的确随着靠近稳定岛区域而指数上升。[89][90]具有放射性,半衰期不到一毫秒,但这个数值已经比一些预测值高。[67][91]这几点都是稳定岛存在的间接证据。[92]
理论计算显示,鿫的一些同位素可能比已知的294Og更为稳定,这包括293Og、295Og、296Og、297Og、298Og、300Og和302Og。其中297Og能产生长寿原子核的可能性最高,[67][95]从而很可能成为未来鿫合成研究的目标方向。313Og附近一些中子数高得多的同位素也有可能有较长的寿命。[96]这些更重、更稳定的同位素对研究鿫的化学性质有很大的帮助,所以位于杜布纳的科学团队计划在2017年下半年进行一系列实验,以249Cf、250Cf和251Cf的混合物作为目标体,并以48Ca为发射体,目标是合成295Og和296Og这两个新的同位素。联合核研究所计划在2020年重复此项实验,产生297Og。同一条反应也有可能会生成293Og及其子同位素289Lv。联合核研究所和日本理化学研究所计划在2017年至2018年利用248Cm和50Ti的聚变反应来合成295Og和296Og。[72][97][98]
鿫属于18族元素,不含价电子。同族的其他元素统称稀有气体,对大部分常见的化学反应(如燃烧反应等)呈惰性。这是因为这些元素的最外电子壳层由八个电子充满,参与化学反应的价电子被紧紧束缚住,使原子处于十分稳定的最低能量排布。[99]同样,鿫的最外电子壳层相信也是闭合的,价电子排布为7s27p6。[1]
有科学家推测,鿫的物理和化学性质和同族其他元素相近,特别是和周期表上位于它以上的氡类似。[100]单从元素周期规律推断,鿫的反应性会比氡稍高。然而,理论计算却指出,鿫的反应性会比氡高得多。[6]除此之外,鿫甚至有可能比𫓧和鿔更加活跃,后二者在周期表上位于反应性更高的铅和汞之下。鿫反应性之所以会有大大提升,是因为其最后一个充满的7p亚电子壳层从能量考量上稳定性降低,且亚壳层有径向扩张的现象。更准确地说,7p电子和惰性7s电子之间强大的自旋-轨道作用使得价电子壳层到了𫓧就已闭合,鿫的闭合壳层的稳定性故此会大大降低。[1]计算还显示,和其他稀有气体不同,鿫在结合一个电子时会释放能量,也就是说,它的电子亲和能为正数。[101][102]这是因为在相对论效应下,8s能级的稳定性会提高,7p3/2能级的稳定性则会降低。[103]根据预测,鿔和𫓧没有电子亲和性。[104][105]但另一方面,量子电动力学效应却会大大降低这种亲和性。这意味着,此类效应所带来的修正项对超重元素的性质有很大的影响。[101]
鿫预计会有很强的极化性,几乎是氡的两倍。根据稀有气体的趋势推算,鿫的沸点在320和380 K之间,[1]比先前估算的263 K[106]和247 K高得多。[107]尽管这些计算的不确定性很大,但足以断定,鿫在标准情况下呈气态的可能性很低。[1]而且,其他稀有气体的液态温度范围较窄,只有2至9 K,所以鿫在标准情况下最有可能是固体。假如鿫在标准情况下的确是气体,就算是单原子气体,它也会是标准情况下密度最高的气态物质之一。
由于极化性极高,所以鿫的电离能会异乎寻常的低(和铅相近,[5]且比𫓧低得多[108]),而且具有标准凝聚态。[1]相对论效应对鿫的原子核和电子云结构都有较强的影响:鿫的7p轨道在自旋-轨道效应下有很强的分裂,所以价电子和核心电子亚壳层会“散开”成为均匀的电子费米气体,这和相对论效应较弱的氡和氙不同。在核子(特别是中子)方面也有类似的情况。这种现象在中子壳层闭合的302Og原子核开始出现,并在壳层闭合,尚未发现的472164超重原子核(含164个质子,308个中子)尤为突出。[109]
目前唯一一种经证实存在的鿫同位素294Og半衰期太短,其化学性质无法通过实验直接探究。因此,科学家至今还没有合成任何鿫化合物。[58]不过,自1964年开始,科学家就对鿫的化合物做过不少的理论计算。[10]他们预测,如果电离能足够高的话,鿫就会很难氧化,所以它最常见的氧化态就会和其他稀有气体一样为零。[110]但是,也有科学家发表过与之相悖的理论预测。[8]
计算显示,双原子分子Og2的键合作用强度与Hg2相当,键离解能为6 kJ/mol,大约为Rn2的四倍。[1]出乎意料的是,计算出的键长比Rn2短0.16 Å,意味着鿫原子之间有着很强的键合作用。[1]另一方面,OgH+的键离解能(即鿫的质子亲和能)则比RnH+低。[1]
根据预测,鿫和氢之间的作用力非常弱,可以视为纯粹的范德华力,而不是真正的化学键。不过,鿫会和高电负性元素形成化学键,所产生的化合物预计比鿔或𫓧所形成的化合物更稳定。[5]+2和+4氧化态预计可以在OgF2和OgF4中稳定存在。[111]因为7p1/2亚壳层被紧紧束缚,所以+6态的稳定性会相对较低。[8]这个现象,和鿫反应性比正常高的现象,都源自同一个原理。例如,鿫和F2结合形成OgF2时,会释放106 kcal/mol的能量,其中46 kcal/mol就来自自旋-轨道作用。以相似的分子RnF2做类比,它形成时所释放的49 kcal/mol能量之中,有10 kcal/mol出自自旋-轨道作用。[5]该作用也提高了OgF4分子四面体形Td构型的稳定性,这有别于XeF4的平面四方D4h构型(估计也是RnF4的分子构型)。[111]鿫氟键更有可能属于离子键,而非共价键,所以鿫氟化物都不具挥发性。[6][112]根据预测,由于鿫有很高的电正性,所以OgF2属于半离子分子。[113]同样因为电正性,鿫能够和氯成键,[6]这和其他的稀有气体有所不同(其实氙和氡有可能也可以和氯成键)。[114][115]
I would say we're very confident.