砹(英语:Astatine;中国大陆、港澳译为砹【拼音:ài,注音:ㄞˋ,粤拼:aai6】,台湾译为砈【拼音:è,注音:ㄜˋ,粤拼:ngo5】;旧译銰、鈪),是一种化学元素,其化学符号为At,原子序数为85。砹具有极高的放射性,其所有同位素的半衰期都很短,非常不稳定,其中寿命最长的是砹-210,半衰期为8.5小时。[4]由于其极强的放射性和短暂的寿命,因此对砹的研究十分困难,目前科学家对这一元素所知甚少。砹在元素周期表中位于碘之下,为卤素的一员,其许多性质可以从碘推算出来,推算值与砹的已知性质相符。
人们尚未观测过砹元素的单质,因为所有肉眼能观察到的量都会产生大量的放射性热量,使它瞬间气化。它的熔点很可能比碘高很多,与铋和钋相近。砹的化学属性与其他卤素相似:它会与包括其他卤素在内的非金属形成共价化合物,估计能够与碱金属和碱土金属形成砹化物。不过,砹正离子的化学属性则有别于较轻的卤素。
美国柏克莱加州大学的戴尔·科尔森(Dale R. Corson)、肯尼斯·罗斯·麦肯西(Kenneth Ross MacKenzie)和埃米利奥·塞格雷在1940年利用回旋加速器首次合成出砹元素。由于产物极不稳定,所以他们根据希腊文“αστατος”(astatos,意为“不稳定”)将其命名为“astatine”。三年后,该元素被发现存在于大自然中,作为更重元素的衰变产物痕量存在,是在地壳中丰度最低的非超铀元素,任一时刻在地壳中的总量不到1克。[5]自然界中的重元素经各种衰变途径一共会产生4种砹的同位素,质量数分别为215、217、218和219,半衰期都不超过1分钟,而最稳定的两种同位素砹-210和砹-211都不存在于自然界中,只能以人工合成的方式生成。虽然砹-210在所有砹同位素中具有最长的半衰期,但寿命第二长的砹-211是唯一一种具有商业应用的砹同位素,目前在医学中用作α粒子射源,以诊断及治疗某些疾病。由于放射性极强,所以砹的使用量非常低。
人们对砹的宏观特性所知甚少。[7]其寿命太短,因此可用于研究的量极为有限。[8]可观量的砹元素会释放大量辐射,将自身加热,迅速气化。[9]砹一般归为非金属或类金属。[10][11]有科学家认为,砹能够形成凝聚态金属物质。[12]
砹的大部分物理特性都是根据理论或实验证据推算而得的。[13]例如,卤素的原子序越高,色泽就越深(氟几乎无色,氯呈亮绿色,溴呈棕色,而碘呈深灰或紫色)。如果该趋势持续,那么砹将会具有黑色金属质地。[14][15][16]
根据类似的趋势,可推断砹的熔点和沸点比轻卤素都要高,估值分别为575 K和610 K。[17]然而一些实验证据显示,砹的熔点和沸点有可能比理论预测的低。[18]砹的升华作用比碘缓慢,其蒸气压也较低。[8]在室温下把砹置于玻璃表面,1小时之后一半的砹会气化。[a]砹在中紫外区的吸收光谱,线光谱分别为224.401和216.225 nm,显示了电子由6p到7s的跃迁。[20][21]
固体砹的晶体结构目前是未知的,[22]身为碘的类似物,它可能具有由砹的双原子分子组成的斜方晶系结构,且是一种半导体(能隙为0.7eV)。或者,如果由砹凝结形成金属相,则可能形成单原子的面心立方结构,而此结构可能为一超导体,和碘高压下的型态类似。[1]对于砹是否会形成双原子分子(At2),目前也未有证据证实或否定。[23][24][25][26][27]某些文献主张At2从未被观测到,因此并不存在;[28][29]另一些文献则表示或暗示它是存在的。[18][30][31]尽管争议持续,但是砹双原子分子的许多属性都有理论的预测值,[32]如密度为6.2至6.5 g/cm3。[2]键长为300±10 pm,离解能为83.7±12.5 kJ/mol,[33]汽化热(∆Hvap)为 54.39 kJ/mol。由于汽化热大于42 kJ/mol的元素在液体时是金属,砹可能是液态金属。[34]
砹的化学活性比碘低,因此是卤素中活性最低的元素。[44]科学家成功合成了多种砹化合物,量极少。这些化合物会因砹的放射性而迅速瓦解,因此研究机会非常宝贵。实验一般把稀释砹溶液混合在大量的碘溶液中。碘作为载体,可保证有足够的量进行化学分析,如过滤和沉淀等。[45][46][d]
早期研究砹化学的科学家已发现,砹可以和氢形成砹化氢。[49]砹在(稀释)硝酸中会轻易氧化、酸化,形成At0或At+。加入银(I)会使小部分砹沉淀出来,形成砹化银(I)(AgAt)。相比之下,碘则不会被氧化,且会沉淀为碘化银(I)。[8][50]
在气体状态下,砹会与其他卤素碘、溴和氯反应,形成双原子互卤化物,如AtI、AtBr和AtCl。[47]Atl和AtBr可在水中产生:砹与碘/碘离子溶液反应形成AtI,砹与碘/一溴化碘/溴离子溶液反应形成AtBr。过量碘离子或溴离子会导致产生AtBr−2和AtI−2离子;[47]在氯离子溶液中,反应会与氯离子达致平衡,产生AtCl−2或AtBrCl−。[48]在硝酸溶液中用重铬酸氧化砹元素,加入氯离子会产生一种分子,可能是AtCl或AtOCl。用类似的方法可以产生AtOCl−2或AtCl−2。[47]在利用等离子离子源的质谱仪中,将其他卤素的气体加入到含有砹且充满氦气的空间中,会分别产生[AtI]+、[AtBr]+和[AtCl]+。这有助证明砹在等离子离子态下可以形成稳定的中性分子。[47]人们尚未发现砹的任何氟化物。科学家猜测,这是因为这种化合物反应性极强,可能在形成后瞬间与容器玻璃壁反应产生不挥发的物质。[e]虽然氟化砹有可能能够形成,但实验需要用到液态卤素氟化物。[54][47]
1869年德米特里·门捷列夫所发表的元素周期表中,碘以下的位置为空格。在尼尔斯·玻尔确立了化学元素分类的物理基础后,确定第五个卤素应该在碘以下。在正式发现之前,这一元素被称为eka-碘(eka在梵文中意为“一”),就是“碘之下一格”的意思。[63]多人尝试在自然中寻找该元素,但由于其含量极为稀少,许多人的发现都是错误的。[64]
美国阿拉巴马理工学院(今奥本大学)的弗雷德·艾利森(Fred Allison)等人在1931年首次声称发现85号元素。他们将该元素命名为“alabamine”,符号Ab,以纪念学院所在地阿拉巴马州。科学界在其后的几年中都使用这一名称。[65][66][67]然而在1934年,伯克利加州大学的H·G·麦克弗森(H. G. MacPherson)推翻了艾利森的实验方法的有效性。[68]1937年,英属印度达卡(今孟加拉达卡市)的化学家拉真达拉·德(Rajendralal De)也同样错误发现85号元素。他将其命名为“dakin”,并表示它是钍衰变系中与镭F(即钋-210)对等的核素。他的报告中关于这一元素的数据并不符合砹的属性,而至今dakin究竟是什么仍不得而知。[69]
1936年,罗马尼亚物理学家霍里亚·胡卢贝伊和法国物理学家伊维特·哥舒瓦宣称发现元素85号。经由X射线分析, 于1939年他们发表另一篇支持并延伸过去资料的论文。 1944年,胡卢贝伊发表了他上次获得的资料摘要, 并宣称此资料应证了其他研究员的成果。他选择了“dor”(推测是罗马尼亚语中和平长久的意思)作为元素85号的名字。1947年,胡卢贝伊的主张被奥地利化学家弗里德里希·阿道夫·帕内特否认,弗里德里希·阿道夫·帕内特在后来IUPAC负责认知新元素的委员会中就任要职。即使胡卢贝伊的样本包含了砹,但弗里德里希·阿道夫·帕内特表示根据目前的标准,胡卢贝伊检测它的手段缺乏力度, 无法正确识别。[70]胡卢贝伊还参与了早先关于元素87(francium)之发现的虚假声明,有些人认为这使得其他研究人员淡化胡卢贝伊的成果。[71]
1940年,瑞士化学家瓦尔特·敏德(Walter Minder)宣布在镭A(即钋-218)的β衰变产物中发现第85号元素,并以瑞士的拉丁文名称“Helvetia”将该元素命名为“helvetium”。不过,贝尔塔·卡尔利克(Berta Karlik)和特罗德·贝尔奈(Traude Bernert)无法重现实验的结果,因此推论敏德实验所用的氡气受到了污染(氡-222是钋-218的母同位素)。[72]1942年,敏德与英国科学家爱丽丝·雷-史密斯(Alice Leigh-Smith)合作,宣布在钍A(即钋-216)的β衰变产物中发现85号元素的另一同位素。他们将其命名为“anglo-helvetium”,其中的“anglo”是英国的意思。[73]卡尔利克和贝尔奈同样无法重现这一结果。[45]
砹共有32种已知同位素,质量数分别为191和193至223。[6]砹没有稳定或长寿命的同位素。[87]一共只有5种砹同位素的半衰期超过1小时(质量数从207到211),其中寿命最长的是砹-210,半衰期为8.1小时。该同位素的主要通过β+衰变形成寿命较长(相对其他砹同位素而言)的钋-210。基态最不稳定的同位素是砹-213,半衰期为125纳秒,该同位素会经α衰变形成近乎稳定的铋-209。[6]
原子量 | 质量过剩[6] | 产物质量过剩[6] | 平均α衰变能量 | 半衰期[6] | α衰变几率[6] | α半衰期 |
---|---|---|---|---|---|---|
207 | −13.243 MeV | −19.116 MeV | 5.873 MeV | 1.80小时 | 8.6% | 20.9小时 |
208 | −12.491 MeV | −18.243 MeV | 5.752 MeV | 1.63小时 | 0.55% | 12.3天 |
209 | −12.880 MeV | −18.638 MeV | 5.758 MeV | 5.41小时 | 4.1% | 5.5天 |
210 | −11.972 MeV | −17.604 MeV | 5.632 MeV | 8.1小时 | 0.175% | 193天 |
211 | −11.647 MeV | −17.630 MeV | 5.983 MeV | 7.21小时 | 41.8% | 17.2小时 |
212 | −8.621 MeV | −16.436 MeV | 7.825 MeV | 0.31秒 | ≈100% | 0.31秒 |
213 | −6.579 MeV | −15.834 MeV | 9.255 MeV | 125纳秒 | 100% | 125纳秒 |
214 | −3.380 MeV | −12.366 MeV | 8.986 MeV | 558纳秒 | 100% | 558纳秒 |
219 | 10.397 MeV | 4.073 MeV | 6.324 MeV | 56秒 | 97% | 58秒 |
220 | 14.350 MeV | 8.298 MeV | 6.052 MeV | 3.71分钟 | 8% | 46.4分钟 |
221[g] | 16.810 MeV | 11.244 MeV | 5.566 MeV | 2.3分钟 | 0% | ∞ |
砹共有23种同核异构体,也就是某同位素的一个或多个核子处于激发态时的原子核。同核异构体也可称为亚稳态,也就是其内部能量比基态能量高,容易衰变回基态。每种同位素可以拥有多个同核异构体。最稳定的砹同核异构体是砹-202m1,[h]半衰期约为3分钟;最为不稳定的是砹-214m1,半衰期只有265纳秒。[6]
砹的α衰变能量符合重元素的规律。[87]较轻的砹同位素拥有较高的α衰变能量,而能量随原子核质量的增加而降低。砹-211的能量却比它前面的同位素高出许多,因为其原子核有126个中子──126是一个幻数,即中子壳层都已填满。虽然砹-211的半衰期与砹-210的相近,但是砹-211的α衰变几率有41.81%,比砹-210的0.18%高出许多。[6][i]接着的两种同位素则释放更多能量。砹-213释放的能量是所有砹同位素中最高的,所以它也是寿命最短的同位素。[87]尽管较重的同位素释放较少能量,但是由于β衰变(电子发射)几率也随着提升,所以所有砹同位素都是不稳定的。[87]早在1950年,科学家就预测砹不拥有任何β稳定的同位素(即不进行β衰变的同位素)。[88]实验证明,除了砹-213、214、215和216m以外,所有砹同位素都可进行β衰变。[6]砹-210及以下同位素进行β+衰变(正子发射),砹-216及以上同位素进行β−衰变,砹-212可同时进行这两种衰变模式,砹-211则进行电子捕获。[6]
砹是自然界中最稀有的非超铀元素,在地壳中每一时刻只有不到1克的总量。[5]所有在地球形成时存在的砹元素都早已衰变殆尽了,而今天自然中的砹都是重元素的衰变产物。砹曾经被认为是地球上最稀有的元素,但科学家之后发现高浓度含铀矿藏里含有经中子捕获产生的超铀元素锫,而锫比砹更稀有。[9]
其中四种自然同位素(砹-215、217、218和219)是在自然衰变链中发现的。钫-223是砹-219的母同位素,其α衰变几率只有0.006%,所以就算和其他砹同位素相比,砹-219同样极为稀有。然而它的半衰期却是所有自然砹同位素中最长的(56秒)。[6]砹-219会衰变成钋-215,再经β衰变形成砹-215,几率只有0.00023%。南北美洲16公里深的地壳以内,每一时刻只有大约一兆(万亿)个砹-215原子。[92]砹-218是钋-218的β衰变产物,可在自然中出现。与钫-223和钋-215一样,钋-218形成砹-218的途径并不是其主要的衰变途径。[90]不过,镎衰变系从镎-237开始,一直到钫-221都只有唯一的衰变途径,而钫-221也只会衰变成砹-217,因此砹-217是唯一位在主要衰变途径中的砹同位素,惟自然界中的镎衰变系早已衰变殆尽,现时地壳中的镎衰变系初始同位素镎-237主要由铀-238发生核散裂而痕量生成。[90]
砹-211是目前唯一一个具有商业用途的砹同位素。[96]首先把铋金属溅射到金、铜或铝表面上,每平方厘米约含50至100微克。这一铋层(或是氧化铋)再与铜片融合,从而制成核反应的铋目标体。[97]目标体在不易反应的氮气中存放,[98]并以水进行降温,以避免产生了的砹过早地挥发。[97]α粒子(氦-4原子核)在如回旋加速器等粒子加速器中[99]高速撞击铋目标。虽然使用的只有一种铋同位素(铋-209),但有三种可能发生的核反应,分别形成砹-209、210和211。通过把加速器的最高能量调整在砹-211和砹-210的所需能量之间,科学家能够选择性地生产砹-211,并避免其他同位素的形成。[97]
核反应过后所产生的砹与各种其他元素混杂,因此需要经过分离过程。 [100]含有砹元素的铋目标体加热至270 °C,这可气化所有挥发性放射性同位素。之后温度提高至800 °C。虽然80%的砹会在此温度下气化,但铋也同时开始气化。[100]砹的气化过程在600 °C以下速率较慢,但在800 °C以上就会迅速从铋表面上挥发出来。[j] 气体凝聚后在水冷铂表面上收集,再转移到U形石英器皿中。石英器皿再加温至130 °C,以移除杂质(一般是钋),然后到500 °C。这时气化了的砹可收集到指形冷凝器中。[100]这样得出的纯化砹可以用弱硝酸溶液洗出冷凝器,作化学和物理分析等用途。这种方法的砹产量可以达到30%。[100]
将砹放入回旋加速器加热至约650℃就会挥发,通常在冷阱中冷凝。高于850℃的温度可能会增加产量,同时存在因挥发而被铋污染的风险,可能需要重新蒸馏冷凝物以使铋的存在量最小化(因为铋会干扰砹的放射性示踪剂反应)。[101]使用一种或多种低浓度溶剂如氢氧化钠、甲醇或氯仿从捕集器中回收砹,回收率可高达80%。干法分离是生产砹最常用的方式。[102][103]
首先将受辐射照过的铋(或是三氧化二铋)溶解在浓硝酸或高氯酸中。接下来,可以蒸馏掉酸以留下含有铋和所需的砹的白色残余物。然后将该残余物溶于浓酸中。使用有机溶剂如二丁醚或异丙醚,二异丙基醚(DIPE)或氨基脲从该酸中提取砹。使用溶剂提取,用酸(例如氢氯酸)反复洗涤砹的产物,并萃取到有机溶剂中。已知使用硝酸的分离产率为93%,在完成纯化程序时降至72%(使用硝酸蒸馏,清除残留的氮氧化物再以溶剂提取溶解硝酸铋)。[104][105]湿法分离涉及“多重放射性处理步骤”,并且不适合分离大量的砹。然而,湿法分离仍被研究以生产更大量的砹-211,因为湿法分离可以提供更高的一致性。.[105]湿法分离能够在特定的氧化数下产生砹,并且在放射化学实验中有更大的应用性。[106]
砹-211具有核医学应用。[107]刚制成的砹需要马上使用,因为在7.2小时之后,其总量就会减半。砹-211会释放α粒子,或经电子捕获衰变成释放α粒子的钋-211,所以可用于α粒子靶向治疗。[107]
|chapter=
被忽略 (帮助)