锫(英语:Berkelium;中国大陆译为锫、港澳译为錇【拼音:péi,注音:ㄆㄟˊ,粤拼:pui4】,台湾译为鉳【拼音:běi,注音:ㄅㄟˇ,粤拼:bak1】),是一种人工合成的化学元素,其化学符号为Bk,原子序数为97,属于锕系元素和超铀元素,具有放射性。位于美国加州伯克利的劳伦斯伯克利国家实验室在1949年12月首次合成出锫元素,因此锫以伯克莱(Berkeley)命名。锫是继镎、钚、锔和镅后第五个被发现的超铀元素。
最常见的锫同位素是锫-249,主要经高通量核反应堆产生,半衰期为330天。目前制造该同位素的单位有美国田纳西州的橡树岭国家实验室和俄罗斯季米特洛夫格勒的核反应器研究所。第二重要的同位素锫-247要用高能量α粒子向锔-244进行撞击而产生,是锫最稳定的同位素,半衰期为1380年。
1949年12月,格伦·西奥多·西博格、阿伯特·吉奥索和斯坦利·杰拉德·汤普森使用伯克利加州大学的1.5米直径回旋加速器,成功合成并分离出锫元素。在1949至1950年同期被发现的还有锎元素(原子序为98)。[1][2][3][4]
与95和96号元素相似,发现团队为97号元素命名时,也参考了元素周期表中对上的镧系元素的命名方式。95号元素镅(Americium)是以其发现所在的美洲大陆(America)命名的,类似于以欧洲(Europe)命名的铕元素;96号元素锔则是以科学家玛莉·居礼(Marie Curie)和皮埃尔·居礼(Pierre Curie)命名的,类似于以科学家、工程师约翰·加多林(Johan Gadolin)命名的钆元素。发现团队在报告中写道:“我们建议以发现所在的伯克利城(Berkeley),将第97号元素命名为Berkelium(符号Bk),就像它的化学同系物铽(Terbium,65号)是以矿物发现所在地瑞典伊特比(Ytterby)命名的一样。”[2]
锫的合成过程中最困难的是要产生足够的镅作为目标体,以及要从最终产物中把锫分离出来。首先,铂薄片上要涂上硝酸镅(241Am)溶液,在溶液蒸发后,残留物须退火成二氧化镅(AmO2)。科学家再将如此做成的目标体放在位于劳伦斯伯克利国家实验室的1.5米直径回旋加速器中,受能量为35 MeV的α粒子辐射6小时。辐射造成的(α,2n)核反应产生了243Bk同位素,另加两颗中子:[2]
锫是一种柔软的银白色放射性锕系金属,在元素周期表中位于锔之右,锎之左,镧系元素铽之下。锫的许多物理和化学特性与铽相似。锫的密度为14.78 g/cm3,介乎锔(13.52 g/cm3)和锎(15.1 g/cm3)之间;其熔点(986 °C)也低于锔(1340 °C),高于锎(900 °C)。[5]锫的体积模量是锕系元素中相对较低的,大约为20 GPa(2×1010Pa)。[a][6]
由于f轨道电子的内部跃迁,Bk3+离子会发出萤光,峰值在652纳米(红光)和742纳米(深红光,近红外线)波长处。激发功率和样本的温度会影响这两个峰值的相对亮度。要观察到这一萤光现象,可以把硅酸盐玻璃连同氧化锫或卤化锫一起加热,使锫离子在熔化了的玻璃中分散。[7][8]
当温度介乎70 K和室温之间时,锫呈居里外斯顺磁性,实际磁矩为9.69玻尔磁子(µB),居里温度为101 K。实际磁矩值几乎与简单原子L-S耦合模型计算出的理论值9.72 µB相同。当温度降到大约34 K的时候,锫会转为呈反铁磁性。[9]锫在标准状态下在氢氯酸中的溶解焓为−600 kJ/mol−1,并可依此推算出水溶Bk3+离子的标准生成焓(ΔfH°)为−601 kJ/mol−1。Bk3+与Bk0间的标准电极电势为−2.01 V。[10]中性锫原子的电离电势为6.23 eV。[11]
在一般情况下,锫的结构是最稳定的α型。该结构呈六方对称形,空间群为P63/mmc,晶格参数分别为341 pm和1107 pm。该晶体有着双六方密排结构,层序为ABAC,因此它与α-镧和锔以后的锕系元素的α型晶体同型(具有相似的结构)。[12]这种结构随着压力和温度而变化。在室温下压缩到7 GPa时,α-锫会转变为β型,该结构属于面心立方(fcc)对称型,空间群为Fm3m。这种结构转变不会使体积产生变化,但其焓会增加3.66 kJ/mol。[13]当继续加压到25 GPa时,锫更会转变为属于正交晶系的γ型结构,与α-铀相似。转变后的体积会增加12%,并使5f壳层电子离域。[14]直到57 GPa锫都不会再进行相变。[6][15]
加热后,α-锫会变为面心立方结构(但与β-锫稍有不同),空间群为Fm3m,晶格常数为500 pm。这种结构和层序为ABC的密排结构相同。这是一种亚稳态,并会在室温下缓慢地变回α-锫。[12]科学家认为这一相变发生时的温度与锫的熔点非常相近。[16][17][18]
和所有锕系元素一样,锫可溶于各种无机酸溶液中,并在转化为Bk3+时释放氢气。这种三价氧化态(+3)特别在水溶液中最为稳定,但另外也存在四价(+4)的锫化合物。二价(+2)锫化合物也有可能存在,但目前仍不确定。[19][20]锫的镧系同位素铽也有类似的特性。[3]Bk4+在多数酸溶液中都呈绿色,Bk4+则在氢氯酸中呈黄色,并在硫酸中呈橘黄色。[19][21][22]锫在室温下不会与氧发生剧烈反应,这可能是因为它的表面形成了氧化物保护层。另外,锫会与熔化了的金属、氢、各种卤素、氧族元素和氮族元素反应,形成各类二元化合物。[9][16]
钚-239再经中子通量比一般反应堆高几倍的辐射源(如位于美国田纳西州橡树岭国家实验室的85百万瓦特高通率同位素反应堆)照射。[31]高中子通量能够催发多次中子融合反应,把239Pu转换为244Cm,然后转换为249Cm:[30]
锔-249的半衰期很短,只有64分钟,所以不太可能进一步转换为250Cm。不过,锔-249会经β衰变形成249Bk。[24]
虽然247Bk是锫最稳定的同位素,但是合成该同位素的过程却缺乏效率。这是因为锔-247(原同位素)的衰变率很慢,所以在进行β衰变形成锫-247,就已吸收了更多的中子,形成别的同位素了。因此249Bk是最容易合成的锫同位素,但其产量仍然微乎其微(美国在1967至1983年间的锫产量总和只有0.66克[34],每毫克价格高达185美元。[5]
同位素248Bk是在1956年以能量为25MeV的α粒子撞击含各种锔同位素的混合物而首次合成的。该同位素和245Bk的讯号互相重叠,无法直接辨识,但科学家通过测量衰变产物248Cf量的增加,确定了这个新的同位素的存在。[35]同年,科学家以α粒子撞击244Cm,产生了锫-247:[36]
1979年,科学家以11B撞击235U,以10B撞击238U,以14N撞击232Th并且以15N撞击232Th,合成了锫-242。锫-242经电子捕获转变为242Cm,半衰期为7.0 ± 1.3分钟。该实验并没有产生241Bk同位素。[37]科学家在后来成功合成了241Bk。[38]
锫在液体中有着较稳定的+4氧化态,因此要把锫从别的锕系元素中分离出来会较为简单。核合成会产生大量的锕系元素副产品,这些元素的氧化态主要为+3。在最初进行的实验当中,科学家没有用到这一分离法,而是使用了一种相对复杂的过程。三价锫离子可以被氧化为+4态,可用的氧化剂包括溴酸盐(BrO−3)、铋酸盐(BiO−3)、铬酸盐(CrO2−4和Cr2O2−7)、硫醇银(I)(Ag2S2O8)、二氧化铅(PbO2)和臭氧(O3)等,另也可用光化学氧化过程。制成的四价锫离子再通过离子交换层析法或液态-液态提取法分离出来。液态-液态提取法可使用HDEHP(二(2-乙基已基)膦酸)、各种胺、磷酸三丁酯或其他的各种试剂。这些过程都能将锫从多数三价的锕系元素和镧系元素中分离出来,但铈除外。(镧系元素并不是离子照射后的产物,而是在各种核裂变衰变链中产生的。)[39]
橡树岭国家实验室采用的方法如下:先用氯化锂作为试剂对最初的锕系元素混合物进行离子交换法,再将其沉淀为氢氧化物,过滤后溶解在硝酸中。然后用正离子交换树脂对该溶液进行高压洗提,其中的锫再经由以上的任一方法氧化并提取出来。[39]这个溶液当中几乎没有任何其他的锕系元素(但仍含铈)。把Bk4+还原为Bk3+之后,可再次用离子交换法把锫从铈中分离出去。[40]
位于美国爱达荷州的爱达荷国家实验室于1952年开始了一项计划,以研究固态锫及其化合物的化学及物理属性。Burris B. Cunningham和Stanley Gerald Thompson于1958年用8克的钚-239作为目标体,在反应堆内对其进行持续6年的放射,最后首次制成了宏观数量的锫元素(0.6微克)。[34][41]这是目前唯一一种可用来制造可称量的锫的方法,且大部分实验所用到的固态锫重量都不超过几微克。[16][42]
已知的氧化锫有两种,其中的锫氧化态分别为+3(三氧化二锫,Bk2O3)和+4(二氧化锫,BkO2)。[50]二氧化锫是一种棕色的固体,[51]三氧化二锫则是熔点为1920 °C的黄绿色固体,[52][51]可通过氢分子来还原二氧化锫而取得:
锫卤化物中锫的氧化态为+3或+4,[54]其中+3态特别在溶液中最为稳定。科学家目前只知道四价卤化物BkF4和Cs2BkCl6的固态属性。[55]三氟化锫和三氯化锫中锫原子的配位呈三帽三角菱柱形,配位数为9。在三溴化锫中,锫原子的配位呈二帽三角菱柱形形,配位数为8;或呈八面体形,配位数为6。[56]三碘化锫中的锫配位呈八面体形。[57]
四氟化锫(BkF4)是一种黄绿色的离子固体,与四氟化铀和四氟化锆同型。[58][60][61]三氟化锫(BkF3)也是种黄绿色的固体,但它有两种晶体结构。较稳定的一种存在于较低温度,与三氟化钇同型;另一种存在于350和600 °C之间,与三氟化镧同型。[58][60][62]
1962年,科学家首次分离并研究了三氯化锫(BkCl3),其重量只有30亿分之一克。他们首先准备一条温度为500 °C,含有氧化锫的中空石英管,再注入氯化氢。[63]制成三氯化锫为绿色固体,熔点在600 °C,[54]结构与三氯化铀同型。[64][65]当加热到接近熔点时BkCl3会进行相变,结构转为属于正交晶系。[66]
已知的三溴化锫共有两种,其中锫的配位数分别为6和8。[42]后者不甚稳定,在加热到大约350 °C时会转变为前者。科学家从249BkBr3样本刚制成时,持续超过3年利用X光散射技术对该样本进行检测。在这段时间内,一部分的锫-249经过β衰变转变成锎-249,使化合物变为249CfBr2。样本的结构并没有随时间变化,但249CfBr3可以被氢还原成249CfBr2,而249BkBr3则不能被还原。科学家又对单独的249BkBr3和249CfBr3,以及对两者的混合物分别进行了实验,都证实了该项结果。[56]化合物中的锫以每天0.22%的速率衰变为锎,这有碍对锫化合物的研究。除了会干扰化学成分之外,249Cf还会释放α粒子,从而对晶体结构造成破坏,并使样本自然加热。要消除化学成分变化的影响,可以在不同时间对样本进行测量,并依此推算出所需的数值。[55]
在1摩尔浓度的氢氧化钠溶液中,氢氧化锫(III)和氢氧化锫(IV)都是稳定的。磷酸锫(III)(BkPO4)是一种固体,并在绿光照射下会有强烈的萤光反应。[70]要制备氢化锫,须使锫金属和氢气在大约250 °C的温度下反应。[67]氢化锫的化学式中,氢的系数不是整数:BkH2+x(0 < x < 1)。[69]锫还有几种其他的盐,包括硫氧化锫(Bk2O2S)以及水合硝酸锫(Bk(NO3)3·4H2O)、水合氯化锫(BkCl3·6H2O)、水合硫酸锫(Bk2(SO4)3·12H2O)和水合草酸锫(Bk2(C2O4)3·4H2O)。[55]Bk2(SO4)3·12H2O在600 °C温度下于氩气中(为避免氧化成BkO2)经热分解后,会产生硫氧化锫(III)晶体(Bk2O2SO4)。该化合物在惰性环境里在1000 °C以下不会热分解。[71]
锫的核裂变属性与其邻近的锕系元素不同,这使锫不能成为一种有效的核反应燃料。锫-249的热中子捕获截面较大(710靶恩),共振积分为1200靶恩,但热中子裂变截面却很低。因此在热核反应堆中,大部分的锫-249会转变为锫-250,再迅速衰变为锎-250。[77][78][79]理论上,锫-249可以在快中子增殖反应堆中维持核链反应。其临界质量较高,有192 kg。利用水或钢反射器,可以降低临界质量,但仍然会大大超出锫在全球的总产量。[80]
锫-247在热中子反应堆和快中子反应堆中都能够维持核链反应,但由于制造方法繁复,其产量远低于临界质量。球体锫-247的临界质量为75.7 kg,加上水反射器后为41.2 kg,用钢反射器(厚30 cm)的话,则为35.2 kg。[80]
|chapter=
被忽略 (帮助);