𬭊(拼音:dù,注音:ㄉㄨˋ,粤拼:dou6;英语:Dubnium),是一种人工合成的化学元素,其化学符号为Db,原子序数为105。𬭊是一种极具放射性的超重元素,其最稳定的已知同位素𬭊-268的半衰期约为28小时,这也是原子序大于101(钔)的元素中最长寿的同位素。[5]𬭊不出现在自然界中,只能在实验室内以粒子加速器少量合成。其英文名Dubnium源自位于俄罗斯的小镇杜布纳(Dubna),也是𬭊最早被合成出的地方。
在1960年代,苏联和美国加州的实验室制造了微量的𬭊元素。两国未能确定彼此的发现次序,因此双方科学家对其命名发生了争论,直到1997年国际纯粹与应用化学联合会(IUPAC)确认了苏联的实验室最早合成该元素,并为双方妥协而取名为Dubnium。
超重元素[a]的原子核是在两个不同大小的原子核[b]的聚变中产生的。粗略地说,两个原子核的质量之差越大,两者发生反应的可能性就越大。[12]由较重原子核组成的物质会作为靶子,被较轻原子核的粒子束轰击。两个原子核只能在距离足够近的时候,才能聚变成一个原子核。原子核(全部都有正电荷)会因为静电排斥而相互排斥,所以只有两个原子核的距离足够短时,强核力才能克服这个排斥力并发生聚变。粒子束因此被粒子加速器大大加速,以使这种排斥力与粒子束的速度相比变得微不足道。[13]不过,只是靠得足够近不足以使两个原子核聚变:当两个原子核逼近彼此时,它们通常会在一起约10−20秒后裂变(产物不需要和反应物相同),而非形成单独的原子核。[13][14]如果聚变发生了,两个原子核产生的一个原子核会处于激发态[15],被称为复合原子核,非常不稳定。[13]为了达到更稳定的状态,这个暂时存在的原子核可能会直接核裂变,[16]或是放出一些带走激发能量的中子。如果这些激发能量不足以使中子被放出,复合原子核就会放出γ射线。这个过程会在原子核碰撞后的10−16秒发生,并创造出更稳定的原子核。[16]联合工作团队(JWP)定义,化学元素的原子核只有10−14秒内不进行放射性衰变,才能被识别出来,这个值大约是原子核得到它的外层电子,显示其化学性质所需的时间。[17][c]
粒子束穿过目标后,会到达下一个腔室——分离室。如果反应产生了新的原子核,它就会被这个粒子束携带。[19]在分离室中,新产生的原子核会从其它核素(原本的粒子束和其它反应产物)中分离,[d]并转移到半导体探测器中,在这里停止原子核。这时标记撞击探测器的确切位置、能量和到达时间。[19]这个转移需要10−6秒的时间,意即这个原子核需要存活这么长的时间才能被检测到。[22]衰变被记录后,这个原子核被再次记录,并测量位置、衰变能量和衰变时间。[19]
原子核的稳定性源自于强核力,但强核力的作用距离很短,随着原子核越来越大,强核力对最外层的核子(质子和中子)的影响减弱。同时,原子核会被质子之间,范围不受限制的静电排斥力撕裂。[23]超重元素[24]的主要衰变方式——α衰变和自发裂变都是这种排斥引起的。[e]α衰变由发射出去的α粒子记录,在实际衰变之前很容易确定衰变产物。如果这样的衰变或一系列连续衰变产生了一个已知的原子核,则可以很容易地确定反应的原始产物。[f](衰变链中的所有衰变都必须在同一个地方发生。)[19] 已知的原子核可以通过它经历的衰变的特定特征来识别,例如衰变能量(或更具体地说,发射粒子的动能)。[g]然而,自发裂变会产生各种分裂产物,因此无法从其分裂产物确定原始核素。[h]
尝试合成超重元素的物理学家可以获得的信息是探测器收集到的信息:粒子到达探测器的位置、能量和时间,以及粒子衰变的信息。物理学家分析这些数据并试图得出结论,确认它确实是由新元素引起的,而非由不同的核素引起的。如果提供的数据不足以得出创造出来的核素确实是新元素的结论,并且对观察到的影响没有其他解释,就可能在解释数据时出现错误。[i]
位于杜布纳的联合核研究所(当时在前苏联内)在1968年首次报告发现𬭊元素。研究人员以氖-22离子撞击镅-243目标。他们报告了能量为9.40 MeV和9.70 MeV的α活动,并认为这些活动指向同位素260Db或261Db:
两年后,杜布纳的团队把产物与NbCl5反应后,对所得的氯化物使用温度梯度色谱法分离了两项反应产物。团队在挥发性氯化物中,辨认出一次2.2秒长的自发裂变活动,有可能来自五氯化𬭊-261(261DbCl5)。
同年,在柏克莱加州大学,由阿伯特·吉奥索领导的团队以氮-15离子撞击锎-249,肯定性地合成了𬭊-260。𬭊-260的所测得之α衰变半衰期为1.6秒,衰变能量为9.10 MeV,子衰变产物为铹-256:
由柏克莱加州大学科学家们得出的结果并没有证实苏联科学家们的研究指出,𬭊-260的衰变能量为9.40 MeV或9.70 MeV的结论。因此余下𬭊-261为可能成功合成的同位素。在1971年,杜布纳的团队利用改善了的试验设备重复了他们的实验,并得以证实𬭊-260的衰变数据,所用反应如下:
1976年,杜布纳的团队继续用温度梯度色谱法研究这条反应,并辨认出产物五溴化𬭊-260(260DbBr5)。
苏联团队建议名称Nielsbohrium(Ns),以纪念丹麦核物理学家尼尔斯·玻尔。美国团队则提出把新元素命名为Hahnium(Ha),以纪念德国化学家奥托·哈恩。因此,Hahnium一名在美洲及西欧广为科学家们所用,并出现于许多当时的文献中;而Nielsbohrium用于前苏联和东方集团国家。
两个团队就此对元素的命名产生了争议。国际纯粹与应用化学联合会(IUPAC)就采用了临时的系统命名Unnilpentium(Unp)。为了解决争议,IUPAC于1994年提出名称Joliotium(Jl,鐈),纪念法国物理学家弗雷德里克·约里奥-居里。此名原先由苏联团队提议为元素102的名称,而该元素最后名为锘(Nobelium)。双方仍在元素104至106的命名问题上达不到共识。
鉴于国际上对104至107号元素名均存在较大分歧,全国科学技术名词化学名词审定委员会根据1997年8月27日IUPAC正式对101至109号元素的重新英文定名,于1998年7月8日重新审定、公布101至109号元素的中文命名,其中105号元素中文名在《无机化学命名原则》(1980)中曾定为“𰾉”(hǎn,繁体为𫒢,图: )[37],现根据IUPAC决定的英文名Dubnium(Db),改定为“𬭊”(音同“杜”)。名称源自为获得该元素作过重要贡献的前苏联杜布纳联合核子研究所的所在地俄罗斯小镇杜布纳。[38][39]
在元素周期表中,元素105预测为6d系中第二个过渡金属,以及为5族最重的元素,位于钒、铌、钽之下。因为𬭊直接位于钽以下,所以也能称为eka-钽。5族元素有着明显的+5氧化态,而该特性在重5族元素中更为稳定。因此𬭊预计会形成稳定的+5态。较重的5族元素也具有+4和+3态,所以𬭊也有可能形成这些具还原性的氧化态。
从铌和钽的化学特性推算,𬭊会与氧反应形成惰性的五氧化物Db2O5。在碱性环境中,预计会形成邻𬭊配合物DbO3−4。与卤素反应后,应形成五卤化物DbX5。铌和钽的五卤化物呈挥发性固态或呈气态的三角双锥形单体分子。因此,DbCl5预计将会是一种挥发性固体。同样,DbF5挥发性将更强。其卤化物经水解后,即形成卤氧化物MOX3。因此𬭊的卤化物DbX5应会和水反应形成DbOX3。根据已知较轻的5族元素与氟离子的反应,预计𬭊在和氟离子反应后会形成一系列氟配合物。其中五氟化物和氟化氢反应后会形成六氟𬭊酸离子DbF−6。若氟化物过剩,则会形成DbF2−7和DbOF2−5。如果𬭊的特性是钽的延续,则更高的氟化物浓度会产生DbF3−8,因为NbF3−8目前是未知的。
通过气态热色谱法,对𬭊的化学特性的研究已进行了几年的时间。这些实验研究了铌、钽和𬭊放射性同位素的相对吸收属性。结果产生了典型的5族卤化物及卤氧化物:DbCl5、DbBr5、DbOCl3及DbOBr3。这些初期实验的报告通常称𬭊为Hahnium(中文对应译为“𫒢”)。
公式 | 名称 |
---|---|
DbCl5 | 五氯化𬭊 |
DbBr5 | 五溴化𬭊 |
DbOCl3 | 氯氧化𬭊 |
DbOBr3 | 溴氧化𬭊 |
本节有关以冷核聚变反应合成𬭊原子核。这些过程在低激发能(约10至20 MeV,因而称为“冷”核聚变)生成复核,裂变之后存活几率较高。处于激发状态的原子核再衰变至基态,期间只发出一颗或两颗中子。
首次尝试合成𬭊的冷聚变反应在1976年由杜布纳Flerov核反应研究所的团队进行,使用的是以上的反应。他们探测到了一次5秒长的自发裂变活动,指向257Db。其后改为指向258Db。1981年,位于重离子研究所的团队利用改进了的母子体衰变关系法研究了该反应。他们证实探测到258Db,1n中子蒸发道的产物。[42]在1983年,位于杜布纳的团队用化学分离后辨认衰变产物,重新进行了以上的反应。他们探测到了来自以258Db为首的衰变链中的已知产物的α衰变。这项发现成为了成功形成𬭊原子核的部分证据。重离子研究所的团队在1985年重新进行反应,并探测到10个257Db原子。[43]1993年设施的重要更新之后,在2000年,团队在1n、2n及3n激发函数测量了120次257Db的衰变、16次256Db的衰变及一次258Db的衰变。整合到的257Db的数据使得团队能够首次研究这个同位素的光谱,辨认到一个同核异构体257mDb的同时,得到了首次对257Db衰变能级结构的确认。[44]这条反应用于在2003至2004年对钔和锿的光谱研究当中。[45]
1983年,尤里·奥加涅相和在杜布纳的团队研究了这条反应。他们观察到了一次2.6秒长的自发衰变活动,初步指向256Db。之后的结果指出应改为指向256Rf,来自于电子捕获分支比约为30%的256Db。
1983年,奥加涅相和在杜布纳的团队研究了这条反应。他们观察到了一次1.6秒长的活动,其中α衰变分支比约为80%,自发衰变分支比约为20%。这次活动初步指向255Db,而其后的结果指出应改为指向256Db。
杜布纳的团队在1976年研究了这条反应,再次探测到5秒长的自发裂变反应。活动起初指向257Db,而后来改为指向258Db。2006年,劳伦斯伯克利国家实验室的团队在其单原子序发射物(odd-Z projectile)计划中重新研究了该反应。他们在测量1n和2n中子蒸发道时,探测到258Db和257Db。[46]
杜布纳的团队在1976研究过这一反应,但这次并未探测到最初指向257Db而后来改为指向258Db的5秒长的自发衰变活动。他们却探测到1.5秒长的自发衰变活动,最初指向255Db。
杜布纳的团队在1976年研究了这一反应,再次探测到5秒长的自发裂变活动,最初指向257Db,后来改为指向258Db。
本节有关以热核聚变反应合成𬭊原子核。这些过程在高激发能(约40至50 MeV,因而称为“热”核聚变)生成复核,裂变及拟裂变之后存活几率较低。处于激发状态的原子核再衰变至基态,期间发出3至5颗中子。
Andreyev等人于1989年在Flerov核反应研究所利用磷-31束研究了该罕见的反应,但对此研究结果的报告非常有限。一处来源称没有探测到任何原子,而来自俄罗斯本国的另一更可靠来源称,在5n通道合成了258Db,产量为120 pb。
2006年,在一项用铀目标合成超重元素的研究项目中,劳伦斯伯克利国家实验室的由Ken Gregorich领导的团队研究了这条新反应的4n和5n通道的激发函数。[47]
Andreyev等人在杜布纳Flerov核反应研究所于1992年首次进行了对这条反应的研究。他们在5n和6n出射道观察到258Db及257Db,产量分别为450 pb和75 pb。[48]
杜布纳Flerov核反应研究所的团队首次在1968年尝试合成𬭊元素。他们观察到两条α线,初步指向261Db和260Db。他们在1970年重复进行实验,观察自发裂变活动。发现的2.2秒长自发裂变活动指向261Db。1970年,杜布纳的团队开始使用温度梯度色谱法,在化学实验中探测𬭊的挥发性氯化物。第一次尝试中,他们探测到具挥发性的自发裂变活动,其吸收特性类似于NbCl5而非HfCl4。这表示,类钕原子核形成为DbCl5。1971年,他们用更高敏感度的工具重复进行了实验,并观测到类钕部分的α衰变。这成了形成260Db的证据。利用溴化物的形成,这个实验在1976年再次进行,并取得几乎相同的结果。这意味着产生了具挥发性及类钕特性的DbBr5。
保罗谢尔研究所首次在1999年研究了这项反应,从而产生262Db作化学实验。实验探测到4颗原子,截面为260 pb。[50]位于日本原子能研究所的科学家们在2002年进一步研究这条反应,并在研究𬭊的水溶化学时,确认产生出262Db同位素。[51]
阿伯特·吉奥索在1970年于加州大学发现了260Db之后,其团队在翌年又发现了新同位素262Db。他们同时观察到源头未能确认的一次25秒长的自发裂变,可能与现在所知的263Db自发裂变支链有关。[52]1990年,劳伦斯伯克利国家实验室中由Kratz带领的一组团队确切地发现了新同位素263Db,同位素产生于4n中子蒸发通道中。[53]这一团队重复几次利用这条反应,用以尝试证实263Db的一条电子捕获支链,该支链会产生半衰期较长的263Rf同位素(见𬬻)。[54]
阿伯特·吉奥索在1970年于加州大学发现了260Db之后,其团队在翌年又发现了新同位素261Db。[52]
劳伦斯伯克利国家实验室在1970年发现了260Db之后,在翌年又发现了新同位素261Db。[52]
劳伦斯伯克利国家实验室的一个团队在1970年研究了这条反应,并在实验中发现了同位素260Db。他们用了现代的母子核衰变关系法证实了这个发现。[55]1977年,橡树岭国家实验室团队重复进行了实验,通过辨认来自衰变产物铹的K壳层X光,证实发现了同位素。[56]
1988年,劳伦斯利福摩尔国家实验室的科学家在不对称热核聚变反应中用锿-254作目标,以寻找新的核素:264Db和263Db。由于锿-254目标太小,实验的敏感度太低,因此未能探测到任何蒸发残余。
𬭊的同位素也是某些更高元素衰变中的产物。下表列出至今为止的观测:
蒸发残余 | 观察到的𬭊同位素 |
---|---|
294Uus | 270Db |
288Uup | 268Db |
287Uup | 267Db |
282Uut | 266Db |
267Bh | 263Db |
278Uut, 266Bh | 262Db |
265Bh | 261Db |
272Rg | 260Db |
266Mt, 262Bh | 258Db |
261Bh | 257Db |
260Bh | 256Db |
如同其他高原子序的超重元素,𬭊的所有同位素都具有高度放射性,半衰期很短,非常不稳定。目前已知寿命最长的同位素为𬭊-268,半衰期约为28小时[57],这也是原子序大于101(钔)的元素中最长寿的同位素,但这种同位素难以被制成。[58]杜布纳联合原子核研究所于2012年的计算显示,预计𬭊所有同位素的最长半衰期不会显著超过一天。[59]
同位素 | 发现年份 | 所用反应 |
---|---|---|
256Db | 1983?, 2000 | 209Bi(50Ti,3n) |
257Dbg | 1985 | 209Bi(50Ti,2n) |
257Dbm | 2000 | 209Bi(50Ti,2n) |
258Db | 1976?, 1981 | 209Bi(50Ti,n) |
259Db | 2001 | 241Am(22Ne,4n) |
260Db | 1970 | 249Cf(15N,4n) |
261Db | 1971 | 249Bk(16O,4n) |
262Db | 1971 | 249Bk(18O,5n) |
263Db | 1971?, 1990 | 249Bk(18O,4n) |
264Db | 未知 | |
265Db | 未知 | |
266Db | 2006 | 237Np(48Ca,3n) |
267Db | 2003 | 243Am(48Ca,4n) |
268Db | 2003 | 243Am(48Ca,3n) |
269Db | 未知 | |
270Db | 2009 | 249Bk(48Ca,3n) |
近期有关272Rg的衰变数据指出,某些衰变链通过260Db时的半衰期比预期的长许多。这些衰变与同核异构体衰变有关,其进行α衰变时半衰期约为19秒。更进一步的研究能断定更准确的衰变源。
在对266Mt和262Bh衰变的研究中,有258Db同核异构体存在的证据。这些经电子捕获的衰变与经释放α粒子的衰变的半衰期有着显著的分别。这表示存在着一种以电子捕获方式衰变,半衰期约为20秒的同核异构体的存在。更进一步的研究能断定更准确的衰变源。
对257Db 形成及衰变的研究已证实了一种同核异构体的存在。最初认为257Db进行α衰变,能量为9.16、9.07和8.97 MeV。在测量这些衰变与253Lr的衰变的关系之后,证实能量为9.16 MeV的衰变属于另外一种同核异构体。数据分析加上理论表示该活动的源头为亚稳态257mDb。基态进行α放射,能量为9.07和8.97 MeV。近期实验并没有证实257m,gDb的自发裂变。
|article=
被忽略 (帮助)