锘(拼音:nuò,注音:ㄋㄨㄛˋ,粤拼:nok6;英语:Nobelium),是一种人工合成的化学元素,其化学符号为No,原子序数为102,是第十个超铀元素及倒数第二个锕系元素,为一种具极高放射性的金属元素,其寿命最长的同位素锘-259的半衰期仅58分钟,而化学上最常使用的是可被较大规模制造的锘-255(半衰期3.1分钟)。如同所有原子序超过100的重元素(即超镄元素,transfermium element),锘无法通过中子捕获生成,只能在粒子加速器中,由粒子撞击较轻之元素生成。由于锘无法大量生产且其所有同位素的半衰期都很短,目前在基础科学研究之外没有任何用途。
化学实验确认了锘在元素周期表中表现为镱的较重同系物。锘的化学性质并没有被完全了解;大部分已知的化学性质是在水溶液中表现出的。有别于其他重锕系元素,氧化数为+2的锘在水溶液中远较+3态稳定,且氧化数为+3的锘不容易被保存,和锘被发现之前科学家预测的结果相符。锘也是所有镧系及锕系元素中,唯一一个以+2价为最常见、最稳定氧化态的元素。
锘是以炸药发明者及科学贡献者瑞典人阿佛烈·诺贝尔命名。在公元1950年至1960年代间,许多来自瑞典、前苏联及美国的实验室都宣称发现了锘。瑞典的科学家不久后撤回了他们的宣称,而发现的顺序以及元素的命名在前苏联以及美国的科学家之间起了争论。直到1997年,国际纯化学和应用化学联合会(IUPAC)将元素的发现归功于前苏联,但因锘的名称已被长期使用而保留了瑞典的命名。
超重元素[a]的原子核是在两个不同大小的原子核[b]的聚变中产生的。粗略地说,两个原子核的质量之差越大,两者发生反应的可能性就越大。[9]由较重原子核组成的物质会作为靶子,被较轻原子核的粒子束轰击。两个原子核只能在距离足够近的时候,才能聚变成一个原子核。原子核(全部都有正电荷)会因为静电排斥而相互排斥,所以只有两个原子核的距离足够短时,强核力才能克服这个排斥力并发生聚变。粒子束因此被粒子加速器大大加速,以使这种排斥力与粒子束的速度相比变得微不足道。[10]不过,只是靠得足够近不足以使两个原子核聚变:当两个原子核逼近彼此时,它们通常会在一起约10−20秒后裂变(产物不需要和反应物相同),而非形成单独的原子核。[10][11]如果聚变发生了,两个原子核产生的一个原子核会处于激发态[12],被称为复合原子核,非常不稳定。[10]为了达到更稳定的状态,这个暂时存在的原子核可能会直接核裂变,[13]或是放出一些带走激发能量的中子。如果这些激发能量不足以使中子被放出,复合原子核就会放出γ射线。这个过程会在原子核碰撞后的10−16秒发生,并创造出更稳定的原子核。[13]联合工作团队(JWP)定义,化学元素的原子核只有10−14秒内不进行放射性衰变,才能被识别出来,这个值大约是原子核得到它的外层电子,显示其化学性质所需的时间。[14][c]
粒子束穿过目标后,会到达下一个腔室——分离室。如果反应产生了新的原子核,它就会被这个粒子束携带。[16]在分离室中,新产生的原子核会从其它核素(原本的粒子束和其它反应产物)中分离,[d]并转移到半导体探测器中,在这里停止原子核。这时标记撞击探测器的确切位置、能量和到达时间。[16]这个转移需要10−6秒的时间,意即这个原子核需要存活这么长的时间才能被检测到。[19]衰变被记录后,这个原子核被再次记录,并测量位置、衰变能量和衰变时间。[16]
原子核的稳定性源自于强核力,但强核力的作用距离很短,随着原子核越来越大,强核力对最外层的核子(质子和中子)的影响减弱。同时,原子核会被质子之间,范围不受限制的静电排斥力撕裂。[20]超重元素[21]的主要衰变方式——α衰变和自发裂变都是这种排斥引起的。[e]α衰变由发射出去的α粒子记录,在实际衰变之前很容易确定衰变产物。如果这样的衰变或一系列连续衰变产生了一个已知的原子核,则可以很容易地确定反应的原始产物。[f](衰变链中的所有衰变都必须在同一个地方发生。)[16] 已知的原子核可以通过它经历的衰变的特定特征来识别,例如衰变能量(或更具体地说,发射粒子的动能)。[g]然而,自发裂变会产生各种分裂产物,因此无法从其分裂产物确定原始核素。[h]
尝试合成超重元素的物理学家可以获得的信息是探测器收集到的信息:粒子到达探测器的位置、能量和时间,以及粒子衰变的信息。物理学家分析这些数据并试图得出结论,确认它确实是由新元素引起的,而非由不同的核素引起的。如果提供的数据不足以得出创造出来的核素确实是新元素的结论,并且对观察到的影响没有其他解释,就可能在解释数据时出现错误。[i]
102号元素的发现是一个复杂的过程,而来自瑞典、美国与苏联的团体皆声称最早发现它。而关于102号元素的第一篇完整浅且精确的检验报告则在1966年来自杜布纳联合原子核研究所 ( Joint Institute of Nuclear Research at Dubna)。[33]
1957年瑞典诺贝尔研究所的物理学家第一次宣布了102号元素的发现。研究小组报告说,他们每隔半小时用碳-13撞击一个锔-96原子,并持续了二十五小时。标靶在两次撞击间进行离子交换反应。50次的撞击中有12次包含了会发光并有发出8.5±0.1百万电子伏特的α粒子的样品。观测到的半衰期为10分钟,并且被认为是锘-251或是锘-253的。不过α粒子也可能来自于一个由102号元素电子补捉而产生、短寿命的钔同位素。[33]该团队提出锘(No)作为102号元素的名称[34][35],并立即由IUPAC批准。[36]杜布纳团队于1968年表示此举是仓促的。[37]隔年,劳伦斯柏克莱国家实验室的科学家重复实验但无法找到任何不能以背景效应解释的8.5 MeV侦测结果。[33]
1959年,瑞典团队试图解释柏克莱团队在1958年为何无法发现102号元素,并坚持认为他们(瑞典团队)确实发现了它。不过,后来的实验显示:任何比锘-259(瑞典实验中不可能产生比它重的同位素)轻的同位素,半衰期皆小于三分钟,而瑞典团队的结果很可能来自钍-225,钍-225具有8分钟的半衰期,并会迅速经历三重α衰变产生衰变能为8.53612MeV的钋-213。由于钍-225在所用反应中很容易产生,并且不会被其所用的化学方法分离出来,因此这个假设很有利。后来关于锘的研究也表明,二价状态比三价状态更稳定,因此发射α粒子的样品不能含有锘,因为二价的锘元素不会被其他三价锕系元素分离。[33]因此,瑞典团队后来撤回了他们的声称,并将成果与背景效应联系起来。[36]
由艾伯特·吉奥索、格伦·西奥多·西博格、John R. Walton和Torbjørn Sikkeland组成的伯克利团队于1958年宣称合成102元素。该团队使用新的重离子直线加速器(HILAC)并用碳-13和碳-12撞击锔原子(95%锔-244和5%锔-246)。他们无法确认瑞典声称的8.5 MeV侦测结果,而镄-250应来自锘-254(来自锔-246),其半衰期约为3秒。1963年后期杜布纳的实验证实在这个反应中可以产生254 102,但实际上它的半衰期为50±10秒。1967年,柏克莱队试图捍卫自己的结果,指出发现的同位素确实是镄-250,但半衰期测量结果发现实际上同位素是锔-244,锘-252的次产物,从更丰富的锎-244产生。他们并将能量差异归因于“分辨率和漂移问题”,尽管这些问题以前没有被报告过,也应该会影响其他结果。1977年的实验也表明,252 102确实具有2.3秒的半衰期。然而,1973年的工作也表明,镄-250(半衰期1.8 s)也可能在反应中以所用能量形成。[33]由此可知,很可能在该实验中没有实际产生锘。[33]
1959年,该团队继续他们的研究并声称他们能够产生一种同位素,该同位素主要通过发射8.3 MeV的α粒子而衰变,半衰期为3秒,伴随着30%的自发裂变分支。此结果在当实被认为由锘-254产生,不过后来改为锘-253。但是,他们也指出,由于条件困难,不能确定是否有制造出锘。[33]而伯克利团队决定采用瑞典团队提出的“nobelium”作为元素的名称,作为对他们的尊重。[36]
同时,在杜布纳,合成102号元素的实验在于1958年以及1960年进行。1958年进行的第一次实验用氧-16撞击钚-239和钚-241,观察到一些能量稍微超过8.5 MeV的α衰变,并且它们被认为是251,252,253 102造成的结果,尽管该团队也说该同位素不能排除是由铅或铋杂质所产生的(不会产生锘)。虽然后来于1958年进行的实验指出,新的同位素可以由汞、铅、铋、铊产生,不过科学家们仍然坚持认为,102号元素可以从这种反应中产生,提到半衰期不到30秒,衰变能量为(8.8±0.5)MeV。后来1960年的实验证明这些是背景效应,1967年的实验也将衰变能量降低到(8.6±0.4)MeV,但两个值都太高而不能对应到锘-253或锘-254的(8.5±0.1) MeV。[33]杜布纳团队后来在1970年和1987年再次说明这些结果是没有定论的。[33]
伯克利团队于1961年宣称在锎、硼与碳离子的反应中发现了103号元素。他们宣称制造出了同位素锘-257,同时也声称合成了102号元素的α衰变同位素,而该同位素拥有15秒的半衰期以及8.2 MeV的α衰变能量。它们认为此粒子为锘-255,而没有给出理由。这些数值并不符合现在已知锘-255的数值,但符合锘-257,而虽然这个同位素也许有出现在这个实验中,但当时并没有明确的确认它的产生。[33]
杜布纳于1964年的实验中,将铀-238靶与氖离子的反应合成出102号元素,并检测元素102同位素的α衰变子体。生成物沿着银制捕捉箔运送并以化学方式纯化,而检测到镄-250以及镄-252。由于镄-252的产生,其母体锘-256也被认为有被合成出来。而镄-252也可在这个反应中,由同时发射具有多余中子的α粒子的反应中直接被制造出来,因此科学家采取了步骤,确保镄-252不能直接进入银制捕捉箔中。那时检测到锘-256的半衰期为8秒,远小于更近代、1967年所测的(3.2 ± 0.2)秒。进一步的实验于1966年进行,利用镅-243(氮-15,4n)锘-254与铀-238(氖-22,6n)锘-254的反应,测得锘-254的半衰期为(50±10)秒。在当时,这个数值与更早的柏克利数据之间的差异并没有被了解,然而后来的实验证明了在杜布纳实验中,异构体250mFm的生成几率小于柏克利实验。事后,杜布纳的实验结果应是正确的,而可视为发现元素102的结论性实验。[33]
杜布纳另一个非常具有信服力的实验于1966年发表,同样利用了两个反应,结论为:锘-254的半衰期确实远超过柏克利实验的3秒。[33]柏克利于1967年以及橡树岭国家实验室于1971年进行的晚期实验完整的确认了102号元素的存在,也确认了早期的观测。[36]柏克利团队于1966年12月重复了杜布纳的实验,完整确认了这些实验,并且利用这些数据分配了他们之前就已经合成、但当时无法识别的同位素,并声称于1958年至1961年间发现了锘。[36]
23892U + 2210Ne → 260102No* → 254102No + 6 10n
1969年,杜布纳团队进行化学实验,确认了锘表现为镱的较重同系物。俄罗斯的科学家将此元素命名为joliotium(符号为Jo),以纪念过世不久的科学家伊雷娜·约里奥·居礼(Irène Joliot-Curie)。这造成了持续几十年的元素命名争议,而不同的团队各自使用自己命的名称。[36]
于1992年,IUPAC以及国际纯粹与应用物理学联合会(IUPAP)的超镄工作小组(Transfermium Working Group,TWG)重新审查了有关发现该元素的声称,并总结了只有杜布纳于1966进行的实验正确的检测并指出衰变后原子序为102的原子核。因此,杜布纳团队正式的被视为锘的发现者,尽管锘可能于1959年就被柏克利的团队侦测到。[33]柏克利于次年批评了这项决定,并指出重新审理101~103号元素“无用而浪费时间”。另一方面,杜布纳认同了IUPAC的决定。[37]
1994年,IUPAC批准了一个尝试解决元素命名争议的方案,公布了102号至109号元素的英文名称。其中102号元素被命名为Nobelium(符号No),因为这个名称在三十年间已被广泛使用,而也应以这个方式纪念阿佛烈.诺贝尔。[38]由于1994年的命名大多不尊重发现者,引来了强烈的抗议,IUPAC于是在事后设置了一段评论期。而在1995年,IUPAC在一个新的计划中将元素102命名为flerovium(符号Fl),以纪念前苏联核物理学家格奥尔基.佛雷洛夫(Гео́ргий Флёров)以及和他名称相同的佛雷洛夫原子反应实验室。[39]这个计划未被接受,现在flerovium成了第114号元素的英文名称。[40]
镧系元素与锕系元素于金属态下,可以二价(如铕及镱)或三价(如其他大多数镧系元素)存在。前者的排列方式为fn+1s2,而后者为fnd1s2。在1975年,约翰森(Johansson)以及罗森格伦 (Rosengren)检测了镧系以及锕系金属元素(皆为二价和三价金属)的凝聚力 (结晶热)的测量及预测值。[43][44]结论为:由[Rn]5f147s2 组态到[Rn]5f136d17s2组态所增加的结合能不足以补偿将一个电子由5f升至6d,而这也适用于排序较后段的锕系元素;因此锿、镄、钔以及锘皆被预测为二价金属,然而锘尚未被确认为如此。[43]二价态在锕系还没有结束前逐渐增加的普遍性,与随着原子序增加而上升的5f电子相对稳定程度有关:这造成的效应之一为锘主要化合价是二价而不是三价,这和其它镧系与锕系元素不同。[45]在1986年,锘金属的升华热被估计为126千焦耳/摩尔,这个数值与锿、镄和钔的数值相近,而这支持了锘会形成二价金属的理论。[43]如同其它后段的锕系元素(三价的铹除外),金属锘应呈现为面心立方体结构。[46]二价金属锘的原子半径应大约为197皮米。[43]锘的熔点预测为827°C,与相邻的钔之预测数值相同。[47]它的密度预计为9.9±0.4g/cm2。[46]
科学家对锘化学性质的了解只有其在水溶液中的特性。锘于水溶液中的氧化数可为+3或+2,其中后者较稳定[43]。在锘被发现之前,科学家们预测锘在溶液中会如同其他大部分锕系金属一样以+3价为较稳定的氧化态。但在1949年时,西博格预测+2价应为锘的另一稳定态,理由为No2+的电子组态为[Rn]5f14,而其5f14壳层十分稳定。这项预测在十九年后才被证实[48]。
比较锘和铽、锎、镄的化学性质的实验于1967年进行。实验中将这四种元素和氯反应并将产物留下,结果发现锘的氯化物会强力的吸附在固体表面上,这显示了它的挥发性不高,如同实验中另外三种元素的氯化物。然而,NoCl2以及NoCl3皆被预测为不易挥发的化合物,因此此实验无法得知锘较常见的氧化态为何。[48]锘在+2价下的稳定度要到了隔年的实验才被确认,在该实验中,使用了离子交换层析法和共沉淀法对约五千个255No原子进行实验。结果发现,锘的行为与二价的碱土金属较为相似,而与其他锕系元素表现不同。这证明了在水溶液中,当没有强氧化剂时,二价态为锘最稳定的状态。后来于1974年的实验中显示锘与钙离子至锶离子间的碱土金属溶析。[48]锘是内过渡元素中唯一一个在水溶液中,+2价为最常见、最稳定氧化态的元素,而这是因为锕系末段5f与6d轨域间较大的能量差。[49]
E°(No3++→No2+) 的标准还原电位在1967年被估计介于+1.4 到 +1.5 V[48]之间,后来在2009年的实验发现只有+0.75 V。[50]此大于0的值显示No2+较No3+稳定且No3+为一好的氧化剂。E°(No2+→No0) 和E°(No3+→No0) 被广泛接受的还原电位值分别为−2.61 and −1.26 V。E°(No4+→No3+)则被估计为+6.5 V。[48]No3+ 和 No2+ 生成的吉布斯自由能估计为−342以及−480 千焦/莫耳。[48]
锘原子有102颗电子,其中有3颗为价电子。 它们的排列方式预测为[Rn]5f147s2(基态能项符号为1S0),不过到2006年为止,此组态并没有被实验确认。[51]在形成化合物时,三个价电子可以全部失去,留下一个[Rn]5f13的内层,这符合了其他锕系元素在3+态时的[Rn]5fn组态。然而,其更有可能指失去两颗价电子,留下稳定、拥有全填满5f14层的[Rn]5f14内层。锘的第一游离能在1974年时根据7s电子会比5s电子先解离的推测,测为(6.65 ± 0.07) 电子伏特,[52]而由于锘的高度放射性和稀少性,此数值并没有再度被验证。[53]1978年时初步估计配位数为6和8的No3+离子半径分别约为90和102皮米;由实验得知No2+离子半径为100皮米(到两位有效数字)。[51]计算得出No2+的水合热为1486kJ/mol。[48]
锘的同位素大多以轰击锕系元素标靶(铀、钚、锔、锎或锿)产生,唯锘-262仅能作为铹-262的衰变产物生成。[55]实验中最常使用的锘-255可利用碳-12轰击锔-248或锎-249产出(通常使用后者)。以每秒3兆个73百万电子伏特的碳-12离子照射350μg cm−2 的锎-249标靶于十分钟内可产出大约1200个锘-255原子。[55]
一旦成功做出了锘-255,便可使用类似于用于分离邻近锕系元素的方式将其分离出来。锘-255的反冲的动量会使它们远离标靶,并将它们带到标靶后面的金属箔(通常为铍、铝、铂或金),这时通常会同时使用气体(通常是氦气)来固定锘-255,并将它们以气流从反应室的小开口中带离。使用长毛细管,并在氦气中加入氯化钾,锘原子可以被输送几十米远。[56]收集在金属箔上的锘可以用稀空气酸除去而不至于使金属箔完全溶解,然后可以利用其趋向二价态的性质(与其他三价为主的重锕系元素不同)来分离它们[56]:在通常被使用的分离条件下(HDEHP作为固定有机相,0.05M盐酸作为流动相,或使用3M盐酸作为阳离子交换的洗脱液树脂柱),锘将通过色谱柱并分离,而其他三价锕系元素将留在色谱柱上。[56]然而,如果使用金箔,因为以色谱层析柱分离出锘前须使用阴离子交换色谱法分离出金,所以该过程将会变得复杂。[56]